/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Pattern Fragility

/v

AARHUS UNIVERSITET

« Forbidden city, Beijing.

7 A — B i 2
il ¥ K 1B 3 8F

Advice

ASINGLE ACT OF CARELESSNESS LEADS
TO THE ETERNAL LOSS OF BEAUTY

/v Why Patterns?

AARHUS UNIVERSITET

« Design patterns organize and structure code in a
particular way.
— Static: Arrangement of classes/interfaces
— Dynamic: Assignment of responsibility, interaction patterns

* Why:

— Because | get some benefits from doing so...

* Bottom line:
— Patterns are means to a goal, not the goal itself

/v Patterns Are Code

AARHUS UNIVERSITET

 However, patterns are defined in code, and if | code
wrong | “amputate” the pattern. | get all the liabilities and

none of the advantages.

Definition: Pattern fragility

Pattern fragility is the property of design patterns that their benefits can
only be fully utilized if the pattern’s object structure and interaction pat-
terns are implemented correctly.

 Warstory:

— COT case: Reusable search component’s deadline was forced.
Additional staff added. A design pattern based, highly decoupled,
design was utterly destroyed in a week.

/v

AARHUS UNIVERSITET

Example: Strategy

/v

Strategy

AARHUS UNIVERSITET
* Responsibilities must be served by concrete behaviour in
objects...

«interface»
PayStation

CS@AU

«interface»
RateStrategy

e
e
-
Ve
e

LinearRateStrategy

ProgressiveRateStrategy

Henrik Baerbak Christensen

VeV Pitfall 1: Declaration of Delegates

AARHUS UNIVERSITET

* 1. Do not even think of using class names in
declarations!

 Why is the following change a disaster
public class PayStationImpl implements PayStation {

[--.]

f#= the strategy for rate calculations =/
private FIGETIESSiveRateStrateE’ rateStrategy ;

-]
'

CS@AU Henrik Baerbak Christensen 7

Y Keypoint 1

AARHUS UNIVERSITET

Key Point: Declare delegate objects by their interface type

Declare object references that are part of a design pattern by their interface type,
never by their concrete class type.

CS@AU Henrik Baerbak Christensen 8

/~pitfall 2: Binding in the Right Place

AARHUS UNIVERSITET

* Loose coupling is fine, but we have to couple the objects
together eventually.

It is important that the binding is made
— In the right place
— as few places as possible (optimally 1!)

« Many possibilities for Strategy:
«interface» Why nOt heref)f)r)

—
‘ Context }-:_;j;;:s_t“ tegy Strategy >
—

(— wmrerface()
JAN

A
C S A | C S B
Client oncreteStrategy. ‘ oncreteStrategy
algorithminterface() ‘ algorithmlInterface()
\

CS@AU Henrik Baerbak Christensen 9

/v Binding in the Wrong Place

AARHUS UNIVERSITET
« Binding in the Context object:

public class PayStationlmpl implements PayStation {
[...]
public void addPayment(int coinValue)} throws IllegalCoinException {
switch (coinValue } {

case 5:
case 10:
case 25: break;
default:
throw new IllegalCoinException(”"Invalid_.coin: ."+coinValue+"_cent.”);
}
insertedSoFar += coinValue ;
FRateStrategv rateStrategcyv = new LinearRateStrategv (
tirneBought = rategtrategy.cal::ulate ime (insertedSoFar);
[..-]

« Wil not break any tests for Alphatown!

CS@AU Henrik Baerbak Christensen 10

/v Consequence

AARHUS UNIVERSITET
 What is the consequence?

« | got all the pattern’s liabilities
— more interfaces and classes and objects to overview

* And none of the pattern’s benefits
— high coupling
— no variability at all!

VeV Advice

AARHUS UNIVERSITET
« Keypoint

Key Point: Localize bindings

There should be a well-defined point in the code where the creation of delegate
objects to configure the particular product variant is put.

 In Strategy, this is normally the Client role.

* Note again:

— Automated tests that test the full suite of products will detect this
defect.

— A manual testing effort much focused on a specific product
variant will probably not...

CS@AU Henrik Baerbak Christensen 12

eV Relation to Other Patterns

AARHUS UNIVERSITET

« Abstract Factory is a creational pattern. Its purpose in life
IS to define bindings. Thus, the factory is often the right
place to make bindings.

« In State it is actually often the ConcreteState objects that
define the ‘next state’ of the state machine. Thus it is

more common that ConcreteState objects directly create
state objects.

eV Concealed Parameterization

AARHUS UNIVERSITET
« Assume: Previous binding survived.
« Later: “Why does Betatown not work any more?
* [need to fix it, and fix it fast!”

public class PayStationImpl implements PavStation {
[---]
public void addPayvment(int coinValue } throws IllegalCoinException {
switch (coinValue } {

case b:

case 10:

case 25: break;
default:

throw new lllegalCoinException(”Invalid.coin: . "+coinValue+" _cent.”);

insertedSoFar += coinValue;
RateStrategy rateStrategy ;
if town == Town ALFHATCWN

rateStrategy = new LinearKateStrategy ();
} else if (town == Town.BETATOWN) {
rateStrategy = new ProgressiveRateStrategy ();
}
timeBought = rateStrategv. calculateTime (insertedSoFar);

—_

-]

CS@AU Henrik Baerbak Christensen 14

VeV Advice

AARHUS UNIVERSITET
« Keypoint

Key Point: Be consistent in choice of variability handling

Decide on the design strategy to handle a given variability and stick to it.

CS@AU Henrik Baerbak Christensen 15

/v Responsibility Erosion

AARHUS UNIVERSITET
« Software changes its own requirement.

 New (weird) request
— Gammatown: Explain rate policy.

public class AlternatingRateStrategy implements RateStrategy {
[...]
public int calculateTime({ int amount) {
if (decisionStrategy.isWeekend ()) {

currentState = weekendStrategy ;
} else {
currentState = weekdayStrategy ;

}
return currentState.calculateTime({ amount };

}

public Stiring gxplanatiDnTextf} {

if (currentState == weekdayStrategy) {
return [the explanation for weekday];
} else {

~ return [the explanation for weekend];
¥
)
H
CS@AU Henrik Baerbak Christensen 16

/v Consequences

AARHUS UNIVERSITET

Now, however, this strategy does not conform to the
contract by the interface.

if (rateStrategy instanceof AlternatingRateStrategy) {
AlternatingRateStrategy rs =
(AlternatingRateStrategy) rateStrategy;
String theExplanation = rs.explanationText ();
[use it somehow]

}
Solution: Move the method up into the RateStrategy
Interface.

CS@AU Henrik Beerbak Christensen 17

VeV Advice

AARHUS UNIVERSITET
+ Keypoint:

Key Point: Avoid responsibility erosion

Carefully analyze new requirements to avoid responsibility erosion and bloating
interfaces with incohesive methods.

 However, sometimes you do need to add more methods
to the interface...

— Strategy: some complex algorithms require methods, that the
simpler variants do not have any use for

CS@AU Henrik Baerbak Christensen 18

/v The polymorphic wrapping trap

AARHUS UNIVERSITET
 From a mandatory hand-in

public class AlphaCivGame implements Game {...}
public class BetaCivGame extends AlphaCivGame{

public BetaCivGame(){

super();
+
@Override
public Player getWinner() {
return new BetaWinnerStrategy().getWinner(this);
+
}
CS@AU Henrik Beerbak Christensen

19

/v Summary

AARHUS UNIVERSITET
« Take care at the implementation level!!!

It only takes a few “slip-ups” to completely destroy the
Intended benefits of a pattern!

« Corollary: You do not learn patterns by reading a
book or listening to me!

e CODE! AND REFLECT!

o2

CS@AU Henrik Baerbak Christensen 20

/v Summary

AARHUS UNIVERSITET

« All your programmers must deeply understand the
roles and protocols embodied in design patterns in
order to keep the design intact.

