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Advice

ASINGLE ACT OF CARELESSNESS LEADS
TO THE ETERNAL LOSS OF BEAUTY



/v Why Patterns?
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« Design patterns organize and structure code in a
particular way.
— Static: Arrangement of classes/interfaces
— Dynamic: Assignment of responsibility, interaction patterns

* Why:

— Because | get some benefits from doing so...

* Bottom line:
— Patterns are means to a goal, not the goal itself



/v Patterns Are Code

AARHUS UNIVERSITET

 However, patterns are defined in code, and if | code
wrong | “amputate” the pattern. | get all the liabilities and

none of the advantages.

Definition: Pattern fragility

Pattern fragility is the property of design patterns that their benefits can
only be fully utilized if the pattern’s object structure and interaction pat-
terns are implemented correctly.

 Warstory:

— COT case: Reusable search component’s deadline was forced.
Additional staff added. A design pattern based, highly decoupled,
design was utterly destroyed in a week.
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Example: Strategy
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* Responsibilities must be served by concrete behaviour in
objects...

«interface»
PayStation

CS@AU

«interface»
RateStrategy

e
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LinearRateStrategy

ProgressiveRateStrategy

Henrik Baerbak Christensen



VeV Pitfall 1: Declaration of Delegates
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* 1. Do not even think of using class names in
declarations!

 Why is the following change a disaster
public class PayStationImpl implements PayStation {

[--.]

f#= the strategy for rate calculations =/
private FIGETIESSiveRateStrateE’ rateStrategy ;

-]
'
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Y Keypoint 1
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Key Point: Declare delegate objects by their interface type

Declare object references that are part of a design pattern by their interface type,
never by their concrete class type.
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/~pitfall 2: Binding in the Right Place
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* Loose coupling is fine, but we have to couple the objects
together eventually.

It is important that the binding is made
— In the right place
— as few places as possible (optimally 1!)

« Many possibilities for Strategy:
«interface» Why nOt heref)f)r)

—
‘ Context }-:_;j;;:s_t“ tegy Strategy >
—

(— wmrerface()
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Client oncreteStrategy. ‘ oncreteStrategy
algorithminterface() ‘ algorithmlInterface()
\
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/v Binding in the Wrong Place
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« Binding in the Context object:

public class PayStationlmpl implements PayStation {
[...]
public void addPayment( int coinValue )} throws IllegalCoinException {
switch ( coinValue } {

case 5:
case 10:
case 25: break;
default:
throw new IllegalCoinException(”"Invalid_.coin: ."+coinValue+"_cent.”);
}
insertedSoFar += coinValue ;
FRateStrategv rateStrategcyv = new LinearRateStrategv (
tirneBought = rategtrategy.cal::ulate ime ( insertedSoFar );
[..-]

« Wil not break any tests for Alphatown!
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/v Consequence
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 What is the consequence?

« | got all the pattern’s liabilities
— more interfaces and classes and objects to overview

* And none of the pattern’s benefits
— high coupling
— no variability at all!
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« Keypoint

Key Point: Localize bindings

There should be a well-defined point in the code where the creation of delegate
objects to configure the particular product variant is put.

 In Strategy, this is normally the Client role.

* Note again:

— Automated tests that test the full suite of products will detect this
defect.

— A manual testing effort much focused on a specific product
variant will probably not...
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eV Relation to Other Patterns
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« Abstract Factory is a creational pattern. Its purpose in life
IS to define bindings. Thus, the factory is often the right
place to make bindings.

« In State it is actually often the ConcreteState objects that
define the ‘next state’ of the state machine. Thus it is

more common that ConcreteState objects directly create
state objects.
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« Assume: Previous binding survived.
« Later: “Why does Betatown not work any more?
* [ need to fix it, and fix it fast!”

public class PayStationImpl implements PavStation {
[---]
public void addPayvment( int coinValue } throws IllegalCoinException {
switch ( coinValue } {

case b:

case 10:

case 25: break;
default:

throw new lllegalCoinException(”Invalid.coin: . "+coinValue+" _cent.”);

insertedSoFar += coinValue;
RateStrategy rateStrategy ;
if town == Town ALFHATCWN

rateStrategy = new LinearKateStrategy ();
} else if ( town == Town.BETATOWN ) {
rateStrategy = new ProgressiveRateStrategy ();
}
timeBought = rateStrategv. calculateTime (insertedSoFar );

—_

-]
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« Keypoint

Key Point: Be consistent in choice of variability handling

Decide on the design strategy to handle a given variability and stick to it.
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/v Responsibility Erosion
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« Software changes its own requirement.

 New (weird) request
— Gammatown: Explain rate policy.

public class AlternatingRateStrategy implements RateStrategy {
[...]
public int calculateTime({ int amount ) {
if ( decisionStrategy.isWeekend () ) {

currentState = weekendStrategy ;
} else {
currentState = weekdayStrategy ;

}
return currentState.calculateTime({ amount };

}

public Stiring gxplanatiDnTextf} {

if ( currentState == weekdayStrategy ) {
return [the explanation for weekday];
} else {

~ return [the explanation for weekend ];
¥
)
H
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Now, however, this strategy does not conform to the
contract by the interface.

if ( rateStrategy instanceof AlternatingRateStrategy ) {
AlternatingRateStrategy rs =
(AlternatingRateStrategy ) rateStrategy;
String theExplanation = rs.explanationText ();
[use it somehow ]

}
Solution: Move the method up into the RateStrategy
Interface.
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+ Keypoint:

Key Point: Avoid responsibility erosion

Carefully analyze new requirements to avoid responsibility erosion and bloating
interfaces with incohesive methods.

 However, sometimes you do need to add more methods
to the interface...

— Strategy: some complex algorithms require methods, that the
simpler variants do not have any use for
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/v The polymorphic wrapping trap
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 From a mandatory hand-in

public class AlphaCivGame implements Game {...}
public class BetaCivGame extends AlphaCivGame{

public BetaCivGame(){

super();
+
@Override
public Player getWinner() {
return new BetaWinnerStrategy().getWinner(this);
+
}
CS@AU Henrik Beerbak Christensen
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/v Summary
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« Take care at the implementation level!!!

It only takes a few “slip-ups” to completely destroy the
Intended benefits of a pattern!

« Corollary: You do not learn patterns by reading a
book or listening to me!

e CODE! AND REFLECT!

o2
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/v Summary
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« All your programmers must deeply understand the
roles and protocols embodied in design patterns in
order to keep the design intact.



