
Software Engineering

and Architecture

Pattern Fragility

Advice

• Forbidden city, Beijing.

Why Patterns?

• Design patterns organize and structure code in a

particular way.

– Static: Arrangement of classes/interfaces

– Dynamic: Assignment of responsibility, interaction patterns

• Why:

– Because I get some benefits from doing so…

• Bottom line:

– Patterns are means to a goal, not the goal itself

CS@AU Henrik Bærbak Christensen 3

Patterns Are Code

• However, patterns are defined in code, and if I code

wrong I “amputate” the pattern. I get all the liabilities and

none of the advantages.

• Warstory:

– COT case: Reusable search component’s deadline was forced.

Additional staff added. A design pattern based, highly decoupled,

design was utterly destroyed in a week.

CS@AU Henrik Bærbak Christensen 4

Example: Strategy

Strategy

• Responsibilities must be served by concrete behaviour in

objects...

CS@AU Henrik Bærbak Christensen 6

Pitfall 1: Declaration of Delegates

• 1. Do not even think of using class names in

declarations!

• Why is the following change a disaster

CS@AU Henrik Bærbak Christensen 7

Keypoint 1

CS@AU Henrik Bærbak Christensen 8

Pitfall 2: Binding in the Right Place

• Loose coupling is fine, but we have to couple the objects

together eventually.

• It is important that the binding is made

– in the right place

– as few places as possible (optimally 1!)

• Many possibilities for Strategy:

Why not here???

CS@AU Henrik Bærbak Christensen 9

Binding in the Wrong Place

• Binding in the Context object:

• Will not break any tests for Alphatown!

CS@AU Henrik Bærbak Christensen 10

Consequence

• What is the consequence?

• I got all the pattern’s liabilities

– more interfaces and classes and objects to overview

• And none of the pattern’s benefits

– high coupling

– no variability at all!

CS@AU Henrik Bærbak Christensen 11

Advice

• Keypoint

• In Strategy, this is normally the Client role.

• Note again:

– Automated tests that test the full suite of products will detect this

defect.

– A manual testing effort much focused on a specific product

variant will probably not...

CS@AU Henrik Bærbak Christensen 12

Relation to Other Patterns

• Abstract Factory is a creational pattern. Its purpose in life

is to define bindings. Thus, the factory is often the right

place to make bindings.

• In State it is actually often the ConcreteState objects that

define the ‘next state’ of the state machine. Thus it is

more common that ConcreteState objects directly create

state objects.

CS@AU Henrik Bærbak Christensen 13

Concealed Parameterization

• Assume: Previous binding survived.

• Later: “Why does Betatown not work any more?

• I need to fix it, and fix it fast!”

CS@AU Henrik Bærbak Christensen 14

Advice

• Keypoint

CS@AU Henrik Bærbak Christensen 15

Responsibility Erosion

• Software changes its own requirement.

• New (weird) request

– Gammatown: Explain rate policy.

CS@AU Henrik Bærbak Christensen 16

Consequences

• Now, however, this strategy does not conform to the

contract by the interface.

• Solution: Move the method up into the RateStrategy

interface.

• But: I have now added a new responsibility. One that

may not be cohesive.

CS@AU Henrik Bærbak Christensen 17

Advice

• Keypoint:

• However, sometimes you do need to add more methods

to the interface…

– Strategy: some complex algorithms require methods, that the

simpler variants do not have any use for

CS@AU Henrik Bærbak Christensen 18

The polymorphic wrapping trap

• From a mandatory hand-in

CS@AU Henrik Bærbak Christensen 19

Summary

• Take care at the implementation level!!!

• It only takes a few “slip-ups” to completely destroy the

intended benefits of a pattern!

• Corollary: You do not learn patterns by reading a

book or listening to me!

• CODE! and reflect!


CS@AU Henrik Bærbak Christensen 20

Summary

• All your programmers must deeply understand the

roles and protocols embodied in design patterns in

order to keep the design intact.

CS@AU Henrik Bærbak Christensen 21

